Better Generalization in IC3

Zyad Hassan       Aaron R. Bradley       Fabio Somenzi

Department of Electrical, Computer, and Energy Engineering
University of Colorado at Boulder

Oct 23, 2013
Outline

1. Problem
2. Solution
3. Results
4. Analysis
5. Conclusions
Outline

1. Problem
2. Solution
3. Results
4. Analysis
5. Conclusions
IC3 [Bradley 2010,2011]

- Model checking algorithm for invariance properties
- Attempts to construct an inductive strengthening of the property
- Construction is incremental: derives many simple lemmas
- Lemmas generation either:
  - Results in an inductive strengthening
  - Guides the search to a counterexample trace
- SAT-based: performs many relatively easy SAT queries
Generalization

- Key component of IC3
- Lifts IC3 from explicit to symbolic
- More successful generalization $\iff$ Fewer individual states examined

*What does IC3 generalize?*
Generalization

- Key component of IC3
- Lifts IC3 from explicit to symbolic
- More successful generalization $\Leftrightarrow$ Fewer individual states examined

*What does IC3 generalize?*
Overview of IC3

- Prove the property by induction:
  - All initial states satisfy the property
  - All successors of good states are good
Overview of IC3

- Prove the property by induction:
  - All initial states satisfy the property
  - All successors of good states are good
Counterexamples to Induction (CTIs): The Troublemakers

---

Hassan, Bradley, Somenzi
Counterexamples to Induction (CTIs): The Troublemakers
<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
<th>Results</th>
<th>Analysis</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hassan, Bradley, Somenzi</td>
<td>Better Generalization in IC3</td>
<td>8/31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem</td>
<td>Solution</td>
<td>Results</td>
<td>Analysis</td>
<td>Conclusions</td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
</tr>
</tbody>
</table>

Hassan, Bradley, Somenzi

Better Generalization in IC3 8/31
A state is unreachable within \( k \) steps to

A set of states is unreachable within \( k \) steps
How does generalization work?

For each state-bit:

- Drop bit
- Find the smallest superset of states that have no predecessors outside of it (if exists)
Successful Generalization
Successful Generalization

Hassan, Bradley, Somenzi
Better Generalization in IC3 11/31
Successful Generalization
Successful Generalization
Successful Generalization
Failed Generalization
Failed Generalization
Failed Generalization

Problem: Doubling the Hamming weight
Solution: Introduce CTI
Results: Successful generalization
Analysis: CTI eliminates self-loops
Conclusions: Better generalization in IC3
Failed Generalization

Hassan, Bradley, Somenzi
Better Generalization in IC3
Failed Generalization

CTI
Ineffective Generalization
Counterexamples to Generalization (CTGs)
Counterexamples to Generalization (CTGs)
Counterexamples to Generalization (CTGs)
Counterexamples to Generalization (CTG)

- State preventing some generalization (dropping a specific state-bit)
- Unlike CTIs, not necessarily backward reachable
- Blocking CTGs:
  - Backward reachable: if deep, saves IC3 explicit traversal
  - Neither forward nor backward: never addressed by IC3 but could continue to obstruct generalization
ctgDown

- Instead of joining CTG with cube, turn attention to CTG
- Like CTIs, prove unreachable within $k$ steps
- If successful: generalize CTG, re-attempt CTI generalization
- If failed: join
Instead of joining CTG with cube, turn attention to CTG if limit is not exceeded
Like CTIs, prove unreachable within $k$ steps
If successful: generalize CTG, re-attempt CTI generalization
If failed: or exceeded maxCTGs limit, join, reset maxCTGs limit
Resetting Limit After Joins
<table>
<thead>
<tr>
<th></th>
<th>Problem</th>
<th>Solution</th>
<th>Results</th>
<th>Analysis</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Problem</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Conclusions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental Setup

- HWMCC’10+11+12 (beemb substituted by beemf)
- 900s timeout
- Ilmc and ABC
- Light-weight preprocessing
- 5 random seeds
<table>
<thead>
<tr>
<th>Family</th>
<th>Size</th>
<th>Solved</th>
<th>Time (s)</th>
<th></th>
<th></th>
<th>Solved</th>
<th>Gain</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>99</td>
<td>99</td>
<td>2524</td>
<td></td>
<td></td>
<td>99</td>
<td>0</td>
<td>1230</td>
</tr>
<tr>
<td>6s</td>
<td>120</td>
<td>19</td>
<td>93466</td>
<td></td>
<td></td>
<td>21</td>
<td>2</td>
<td>94211</td>
</tr>
<tr>
<td>beem</td>
<td>86</td>
<td>48</td>
<td>38149</td>
<td></td>
<td></td>
<td>50</td>
<td>2</td>
<td>39594</td>
</tr>
<tr>
<td>bob</td>
<td>149</td>
<td>122</td>
<td>25804</td>
<td></td>
<td></td>
<td>120</td>
<td>(2)</td>
<td>28679</td>
</tr>
<tr>
<td>intel</td>
<td>60</td>
<td>23</td>
<td>35004</td>
<td></td>
<td></td>
<td>30</td>
<td>7</td>
<td>31153</td>
</tr>
<tr>
<td>pdt</td>
<td>350</td>
<td>331</td>
<td>19291</td>
<td></td>
<td></td>
<td>336</td>
<td>5</td>
<td>15469</td>
</tr>
<tr>
<td>other</td>
<td>280</td>
<td>271</td>
<td>11947</td>
<td></td>
<td></td>
<td>274</td>
<td>3</td>
<td>11463</td>
</tr>
<tr>
<td>Total</td>
<td>1144</td>
<td>913</td>
<td>226790</td>
<td></td>
<td></td>
<td>930</td>
<td>17</td>
<td>222460</td>
</tr>
</tbody>
</table>

Hassan, Bradley, Somenzi Better Generalization in IC3 22/31
<table>
<thead>
<tr>
<th>Family</th>
<th>Size</th>
<th>Solved</th>
<th>Time (s)</th>
<th>Solved</th>
<th>Gain</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>139</td>
<td>99</td>
<td>99</td>
<td>701</td>
<td>99</td>
<td>0</td>
<td>754</td>
</tr>
<tr>
<td>6s</td>
<td>120</td>
<td>23</td>
<td>88401</td>
<td>30</td>
<td>7</td>
<td>82941</td>
</tr>
<tr>
<td>beem</td>
<td>86</td>
<td>51</td>
<td>34098</td>
<td>56</td>
<td>5</td>
<td>31191</td>
</tr>
<tr>
<td>bob</td>
<td>149</td>
<td>123</td>
<td>24292</td>
<td>124</td>
<td>1</td>
<td>24083</td>
</tr>
<tr>
<td>intel</td>
<td>60</td>
<td>23</td>
<td>35665</td>
<td>26</td>
<td>3</td>
<td>34249</td>
</tr>
<tr>
<td>pdt</td>
<td>350</td>
<td>329</td>
<td>22162</td>
<td>333</td>
<td>4</td>
<td>18120</td>
</tr>
<tr>
<td>other</td>
<td>280</td>
<td>270</td>
<td>12591</td>
<td>274</td>
<td>4</td>
<td>10359</td>
</tr>
<tr>
<td>Total</td>
<td>1144</td>
<td>916</td>
<td>218906</td>
<td>943</td>
<td>27</td>
<td>201417</td>
</tr>
</tbody>
</table>
# Outline

1. Problem
2. Solution
3. Results
4. Analysis
5. Conclusions
Purpose

- Confirm reduction in length of explicit backward search
- Understand effect on various IC3 metrics
Depth of CTGs vs. CTIs

![Graph showing the relationship between average CTI depth and average CTG depth. The graph includes symbols representing worse and better performance.](image)

- Average CTI Depth vs. Average CTG Depth
- Symbols indicate performance:
  - Better Performance (×)
  - Worse Performance (+)

Hassan, Bradley, Somenzi
Better Generalization in IC3
Effect on Maximum Depth of Priority Queue

![Graph showing the effect on maximum depth of priority queue. The x-axis represents IImc, and the y-axis represents IImc with ctgDown. The graph compares worse performance (+) and better performance (×).]
Effect on Average Clause Size

![Graph showing the effect on average clause size with IImc with ctgDown and IImc, comparing worse and better performance.]
Outline

1. Problem
2. Solution
3. Results
4. Analysis
5. Conclusions
Conclusions

- Useful to divert IC3’s attention to address reason for failure of generalization
- Not too aggressive handling of CTGs so as not to lose property focus
- Decreases depth of explicit search
The End

Thank you.